1.12. Средняя движущая сила массопередачи и число единиц переноса Определение числа единиц переноса. Влияние перемешивания на среднюю движущую силу.

Средняя движущая сила процессов массопередачи.

Как и в теплопередаче, движение потоков в процессах массообмена может происходить при противотоке, прямотоке и перекрестном токе фаз. Кроме того, возможны другие, весьма разнообразные виды взаимного направления движения фаз, связанные с перемешиванием и распределением потоков.

Независимо от взаимного направления движения фаз контакт их можно осуществить непрерывно или ступенчато.

При ступенчатом контакте апп. состоит из нескольких секций, соединенных м/у собой тем или иным способом, причем в каждой секции возможен любой из указанных выше видов взаимного направления движения фаз. К апп. со ступенчатым контактом относятся тарельчатые колонны.

От взаимного направления движения фаз и вида их контакта зависит величина движущей силы процессов массопередачи. Обычно концентрация фаз изменяются при их движении вдоль поверхности раздела. Поэтому в общее уравнение массопередачи входит величина средней движущей силы.

Выражение средней движущей силы зависит от того, явл. ли линия равновесия (при прочих равных условиях) кривой или прямой.

Определение числа единиц переноса.

ЧЕП выражаются интегралами, которые не могут быть решены аналитически, т.к. вид функции у* = f(x) или х* = φ(у) в каждом конкретном случае различен. В связи с этим ЧЕП nох и nоу определяют методам графического интегрирования.

  ЧЕП м/б найдено более простым графическим методом, если равновесная линия на всех участках, соответствующих одной единице переноса, является прямой или имеет малую кривизну, а рабочая линия прямая.

Влияние перемешивания на среднюю движушую силу.

При выводе уравнений для расчета средней движущей силы предполагалось, что потоки фаз равномерно распределены по поперечному сечению апп., перемешивание отсутствует и все частицы каждой фазы движутся с одинаковыми скоростями. При этом концентрации фаз постоянны по поперечному сечению апп. и изменяются только по его высоте. Как известно, такое движение представляет собой поршневой поток, или поток с идеальным вытеснением. При движении каждой из фаз в режиме идеального вытеснения градиент концентраций явл. наибольшим и ср. движущаяся сила процесса массопередачи – максимальной.

Физическая картина движения потоков в массообменных апп., как правило, значительно сложнее вследствие перемешивания. В этих апп. перемешивание вдоль оси потока обусловлено турбулентной диффузией и разными другими причинами. К числу их относятся увлечение одной из фаз некоторой части другой фазы, движущейся противотоком к первой (например, захват брызг жидкости поднимающимися пузырьками газа или пара при барботаже), различие скоростей по поперечному сечению потока, приводящее к байпасированию части потока (в результате каналообразования), образования застойных зон и т.д.

В апп. ступенчатого типа (тарельчатых колоннах), обратное перемешивание возникает, в частности, вследствие брызгоуноса, при котором брызги увлекаются газом (или паром) в направлении, противоположном движению основной массы жидкости.

Влияние перемешивания на изменение концентраций по высоте (длине)Н массообменного апп. с непрерывным контактом фаз

Обратное перемешивание, уменьшая ср. дв. Силу, тем самым, при прочих равных условиях, снижает эффективность массобмена, характеризуемую кол-ом в-ва, переходящего в единицу времени из фазы в фазу. Это снижение эквивалентно уменьшению ЧЕП в аппарате.

Конструктор сайтов - uCoz